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Introduction
The risk of death of children under-5 years is still very high in 
sub-Saharan Africa region. Children in sub-Saharan Africa are 
more than 14 times more likely to die before the age of five 
than children in developed regions, WHO [1]. A child’s risk 
of dying is highest in the neonatal period, the first 28 days of 
life. Safe childbirth and effective neonatal care are essential to 
prevent these deaths. The poverty is main factor which makes 
the number of children dying per thousand lives in this region 
be very high. Under-five mortality is still high in low and middle 
income countries; in this paper, we used a copula approach to 
measure the dependence between under-five mortality rate and 
gross domestic product (GDP) in order to investigate the level of 
effect of GDP to the mortality. The higher GDP is, the lesser is the 
mortality rate under-five.

The copula is powerful tool for dependency structure; it is a 
good approach for non-linearly correlated variables. The Pearson 
correlation coefficient was developed basically for measuring 
the correlation and addresses only linear dependence, this is 
meaningful measure of dependence and it is very flexible with 
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the elliptical distributions. The draw- back of linear correlation 
coefficients is that out of elliptical distributions, the usage 
may mislead to the good conclusion. However, an innovative 
approach, the so-called copula method, provides the ability to 
couple any marginal distributions and overcome the above linear 
correlation weakness.

The word “copula” derives from the Latin noun for a “link” or 
“tie” that connects two different things and concept of copula 
in sciences was introduced by Sklar and has for a long time been 
being recognized as a powerful tool for modeling dependence 
between two random variables. In this article the Archimedean 
copulas were used for modelling the concordance measures: 
Kendall’s tau and spearman’s rho for mortality rate under-5 years 
in Rwanda in the period of 1981-2015.

Materials and Methods
The under-five mortality rate is a key indicator of child well-
being and It is also a key indicator of the coverage of child 
survival interventions and, more broadly, of social and economic 
development of a country. It is important to use sound statistical 
methods to determine which factors are strongly associated 



2016
Vol. 2 No. 4: 34

2 This article is available in: http://medical-case-reports.imedpub.com

ARCHIVOS DE MEDICINA
ISSN 1698-9465

 Medical Case Reports
ISSN 2471-8041

duration t. the survival function or reliability function is 
S(t) = Pr(T > t) = ( ) dx = 1 - F(t)

t

f x
∞

∫  which gives the probability of 
being alive just before duration t. Every survival function S(t) is 
monotonically decreasing, i.e. s(u)  s(v)≤  for all u > v . The 
following figure shows the survival function of the under-five 
mortality rate in Rwanda (Figure 2). 

Hasard function
An alternative characterization of the distribution of random 
variable T is given by the hazard function, or instantaneous rate 
of occurrence of the event, defined as: 

{ }
0

Pr  t T< t  + dt T  t   
h(t) = lim  

dt dt→

≤ ≥

Hazard proportional model is useful to analyze the risk of death 
given the explanatory variables. The good important feature for 
Cox proportional model is that it could estimate the relationship 
between the hazard rate and explanatory variables without 
having to make assumptions about the shape of the baseline 
hazard function (Figure 3).

The hazard function is neither a density nor a probability. 
However, it may be the probability of failure in an infinitesimally 
small time-period between t and t + dt given that the subject has 
survived till time t. In this sense, the hazard is a measure of risk: 
the greater the hazard between times t1 and t2, the greater the 
risk of failure in this time interval.

Kaplan Meier estimator
Survival analysis is the evaluation of how long individuals, who 
are endangered of certain health risk, will survive. Kaplan-Meier 
estimator is one of most frequently used survival analyses. It is 
also known as the product limit estimator, is a non-parametric 
statistic used to estimate the survival function from lifetime 
data. In medical research, it is often used to measure the fraction 
of patients living for a certain amount of time after treatment 
(Figure 4).

The probabilities shown are called Kaplan-Meier survival 
probabilities and have a unique interpretation. The survival 
probabilities are conditional ones and indicate the probability 
of experiencing the primary endpoint beyond a certain length of 
time. Curves that have many small steps usually have a higher 
number of participating subjects, whereas curves with large 
steps usually have a limited number of subjects.

with child mortality which in turn will help inform the design 
of intervention strategies. This paper focused on Rwanda, the 
under-five mortality rate in Rwanda as well as its GDP. The Table 
1 summarizes the situations from 1981 to 2015.

In last 35 years (from1981 to 1015) the maximum and minimum 
under-five mortality rate in Rwanda are 300 and 42 respectively 
while the maximum and minimum of GDPs are respectively 8.5 
and 1.2 billion$. This maximum death rate appeared in 1994 
and in this period (1994 and 1995), minimum GDP (1.2$ billions) 
appeared. It is obvious to conclude that the under-five mortality 
rate is inversely proportional to the GDP. The seventh column 
contains the skewness coefficients, and is positive for both 
under-five mortality rate and GDP. Positive skewness indicates 
that the tail on the right side is longer or fatter than the left side. 
Standard errors are relatively small. The following figure shows 
scatter plot of under-five mortality rate vs the GDP in Rwanda 
from 1981 to 2015 (Figure 1). 

From the above figure, the under-five mortality rate is very 
high when the GDP is small. In Rwanda there is clear reduction 
of under-five mortality rate after 1994 and the GDP also 
increased significantly. In 2015, the under-five mortality rate is 
42 per thousand lives, this is good achievement but it is still high 
compared to European countries where the rate was 11 per 1000 
lives in 2015. GDP measures the nations, total output of goods 
and services; it should help to better relate individual household 
and personal income. It enables policymakers and central banks 
to judge whether the economy is contracting or expanding. In 
this paper, we investigated the impact of GDP to the under-five 
mortality and it is very clear that the death reduces according to 
increasing of GDP. The Table 2 shows how those two variables 
have the strong negative relationship between them (Figure 2).

From this table, the Kendall’s tau is -0.801 and Spearman’s rho 
is -0.905. These values are much closed to -1. That is the perfect 
negative correlation between these two variables. The GDP of 
developed countries is high which makes the under-five mortality 
to be small. The GDP of sub-Saharan Africa region is very low 
compared to developed countries; this is the main reason-why 
the under-five mortality rate is too high in this region. It is obvious 
to say that under-five mortality is a factor that is associated with 
the well-being of a population and it is taken as an indicator of 
health development and socioeconomic status.

Survival Analysis
Survival function
Let T be a continuous random variable with probability density 
function f (t) and cumulative distribution function F(t) = Pr(T  t),≤
which gives the probability that the event has occurred by 

 
N Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
Gross Domestic Product in 

billion $ 35 1.2 8.5 3.048 2.146 1.432 0.398 0.721 0.778

Number of death per 1000 35 42 300 146 64.344 0.128 0.398 -0.236 0.778

Table 1 Descriptive statistics.
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Marginal Distributions
Introduction
A study of mortality law was introduced by De Moivre. De Moivre 
himself did not consider his law (he called it a “hypothesis”) to 
be a true description of the pattern of human mortality. Instead, 
he introduced it as a useful approximation when calculating the 
cost of annuities. From that period, the different suggestions 
have been made to formulate the mathematical formulas of 
law of mortality, of which the Gompertz [2] is the most famous. 
The many formulas are based on age and accordingly, three 
different periods are considered: infant mortality or mortality 
during childhood (this is rapid decrease of mortality during the 
first few years of life), mortality at the middle ages (where the 
deaths are mainly due to accidents) and mortality at the adult 
ages (is the almost geometric increase of mortality with age). 
Common known functions to model the mortality law are 
Gompertz, Weibull, Inverse-Gompertz, Inverse-Weibull, Gamma 
and lognormal. The Gompertz’s law fits observed mortality rates 
very well at the adult ages. Jacques and Carriere [3] pointed out 
that for certain parameter values the Weibull has a decreasing 
force of mortality, and so it seems that this may be a plausible 
model for early childhood where mortality rates are decreasing. 
In this paper, we used the Weibull distribution to model the 
under-five mortality rate and it seems to be the appropriate one 
to our dataset.

Weibull model
The Weibull survival function is given by:

S(x) = exp x
λ
σ

λ

 
  −   

 
                        (1)

where λ > 0 is a location parameter and σ > 0 is a dispersion 
parameter. The cumulative distribution function is given by:

F(x) = 1- exp x
λ
σ

λ

 
  −   

 
                 (2)

Hence the density function is given by:
-11(x) = exp x xf

λ λ
σ σ

σ λ λ

 
    −       

 

The force of mortality is: 
-11

x
x

λ
σ

µ
σ λ
 =  
 

 when σ λ≥ , then the 

mode of the density is 0 σ λ and µx is a non-increasing function 
of x.

P-P plot and Q-Q plot: In statistics, a P-P plot (probability-
probability plot or percent-percent plot) is a proba- bility plot for 
assessing how closely two data sets agree, which plots the two 
cumulative distribution functions against each other. P-P plots 
are vastly used to evaluate the skew- ness of a distribution. A 
P-P plot can be used as a graphical adjunct to a test of the fit 
of probability distributions with additional lines being included 
on the plot to indicate either specific acceptance regions or the 
range of expected departure from the line. P-P plot is used in this 
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when viewed from left to right. Another common use of Q-Q 
plots is to compare the distribution of a sample to a theoretical 
distribution (Figure 6).

From the Figure we can conclude that our data for under-five 
mortality are normally distributed. The test of normality is 
performed in section 6 (Figure 7).

It seems to us that a distribution more skewed to the right would 
be a better fit, is that right (right skewness) so that our data of 
GDP Product is not normally distributed. We will conclude about 
this in normality test in section 6. On appendix, there is the 
detrended Q-Q plot of GDP.

Kernel density estimation for GDP
A kernel is a non-negative, real-valued, integrable function 
(sometimes also called summable function) K(.) satisfying the 
following two requirements:

K(u)du = 1

K(u)=K(-u)

+∞

−∞







∫ Kernel density condition                             (3)

Due to our data for GDP, we use a kernel density to promote 
the continuity nature in the underlying random variable. The 
intuition of choosing kernel density for GDP is relatively straight 
forward. Kernel density estimation is a fundamental data 
smoothing problem where inferences about the population are 
made, based on a finite data sample. It is a non-parametric way 
to estimate the probability density function of a random variable. 
The kernel distribution may be a good approach for analyzing the 
GDP. Delfin and John [4] used kernel distribution to analyse GDP 
data, Jorge Saba and Arbache [5] used it for GDP per capital and 
Daniel et al. [6], Falko Juessen [7] also used the Gaussian kernel 
density for GDP data. In this paper, we used the Gaussian kernel 
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from 1981 to 2015.

Figure 5

paper to test the goodness of fit of weibull distribution to our 
data base (Figure 5).

Another useful probability plot is Q-Q. The Q-Q plot, or quantile-
quantile plot, is a graphical tool to help us assess if a set of data 
plausibly came from some theoretical distribution such as a 
Normal or exponential. A Q-Q plot (“Q” stands for quantile) is a 
probability plot, which is a graphical method for comparing two 
probability distributions by plotting their quantiles against each 
other. The points plotted in a Q-Q plot are always non-decreasing 
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density to model the GDP in Rwanda from 1981 to 2015 (Figure 8).

Consider a random sample, X = {x1, x2, ..., xn}, from an unknown 
population with density f, a nonparametric estimate of this 
density is given by:

1

1(x)=
nh

n
i

i

x xf k
h=

− 
 
 

∑                                      (4)

Where K(.) is the Gaussian kernel function and h is the smoothing 
(or scaling) parameter and K(x) usually chosen as a symmetric 
probability density function satisfying the condition [8]. The 
Gaussian or Normal kernel is given by:

21( ) exp( ),
22
xK x x

π
−

= −∞ < < +∞                               (5)

By putting (5) in (4), we get the Gaussian kernel density estimate
21 1ˆ (x) exp( ),

22h
xf x

nh π
−

= −∞ < < +∞                              (6)

Maximizing likelihood, choose 
1

ˆlog (x)* arg max
n

h

i

fh h−
=

= ∑ . The ML 

estimate of h is degenerate since it yields 0MLh = , a practical 
alternative is to maximize the pseudo- likelihood computed using 
leave-one-out cross-validation.

Maximum likelihood estimation

The maximum likelihood function is given by:

i
1

( ) (x )
n

i
L fλ

=

=∏ for our case, n = 35 years and by using (2), we get:

-1

1

1( ) exp 
n

i i

i

x xL
λ λ
σ σ

λ
σ λ λ=

  
     = −           

∏

To optimize this function, a logarithmic approach is the simple 
way; the maximum log likelihood function is given by:

l( ) = log L( )λ λ

Hence
-1

1

1l( ) log exp 
n

i i

i

x x
λ λ
σ σ

λ
σ λ λ=

  
     = −           

∑

1

 log ( -1) log 
n

i i

i

x x
λ
σλσ

σ λ λ=

 
    = − + −       

 
∑                                                   (7)

By maximizing the equation (7), we get the estimates of 
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from 1981 to 2015.
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Variables Average x̅ Estimate Estimate 
Death rate (per 1000) 146 164.65 66.15

Mkle maximum kernel likelihood estimate
GDP (in billion $) 3.0486 3.0486  

Table 3 Parameter estimates.
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parameters. Using our dataset, the MLE estimates are shown in 
the next table (Table 3).

The average of under-five mortality rate in Rwanda in last 35 
years is 146 per thousand lives and average of GDP is 3.0486 
billion$. The mode of under-five mortality rate in last 35 years in 
Rwanda is 164.65 and the bandwidth or smoothing (or scaling) 
parameter for GDP �h xλ = is 3.0486. These estimate values can 
be used later to calculate the dependence coefficients.

Models of Dependence
Copula and its applications
The copula has for a long time been recognized as a powerful tool 
for modeling dependence between two random variables. This 
paper describes the copula-based prediction modeling which can 
be employed as a good alternative to the linear correlation-based 
modeling in different domains. Let F (x, y) denote the cumulative 
probability distribution of under-five mortality rate in Rwanda (X) 
and GDP (Y) and marginal distributions of X and Y be F1(x) and 
F2(y) respectively.

Let X and Y be continuous random variables with distribution 
functions F1(x) = Pr(X ≤ x) and F2(y) = Pr(Y ≤ y) respectively, the 
joint distribution function of X and Y is:

F(X,Y) = Pr(x ≤ x, Y ≤ y)

Then there exists a copula C such that F (X, Y) = C(F1(x), F2(y)). 
Conversely, for any distribution functions F1 and F2 and any copula 
C, the function F defined above is a two-dimensional distribution 
function with marginals F1 and F2. Furthermore, if F1 and F2 are 
continuous, C is unique.

The copula C is the function mapping from [0, 1]2 to [0,1] such 
that for all x ∈ [0, 1], C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x 
For all a, b, c, d ∈ [0, 1] and a ≤ b, c ≤ d, VC ([a, b]X[c, d]) = C(b, d) 
− C(b, c) − C(a, d) + C(a, c) The function VC is called the C-volume 
of the rectangle [a, b][c, d].

The copula function is very useful when dealing with vectors of 
random variables because it allows us to model the dependence 
between the variables separately from their marginals. Let apply 
probability transforms 1U = F (x)  and 2V = F (y)  to X and Y with U 
and V uniform random variables defined on [0, 1], there exists a 
bivariate copula function C(U,V ) such that:

1 2H(x, y) = Pr[X x, Y  y] = C[F (x), F (y)] = C(u, v)≤ ≤

If F1(x) and F2(y) are continuous then C (u, v) is unique otherwise 
C (u, v) is uniquely determined on range of F1(x) times range of 
F2(y). Given a joint distribution function F with continuous and 
invertible marginals F1 and F2, as in Sklars Theorem it is easy to 
construct the corresponding copula:

-1 -1
1 2C(U,V ) = F(F  (u), F  (v))

There are many families of copulas but in this paper, we only 
focus on Archimedean copula family with one parameter. The 
Archimedean copula family is popular due to its flexibility in 
modeling dependence. In our case, the Archimedean copula 
used to model the dependency between under-five mortality 

rate in Rwanda and GDP. Let φ be a twice-differentiable strictly 
decreasing function from [0, 1]to [0, ∞] such that  φ(1) = 0 and 
φ−1 be generalized inverse of φ. The distribution function of 
Archimedean copula is given by:

1C (u,v) = ( (u) + (v))φ φ φ φ−                                 (8)

φ is called Archimedean generator. We focused on two 
Archimedean copulas named Gumbel and Clayton. The Gumbel 
and Clayton copula is associated respectively to the following 
generators:

(t) = (-log (t))φφ                                          (9)

and 
1(t) t φ

φ
φ

− −
=                                                        (10)

With θ a positive parameter that controls the dependency among 
variables. By using the Gumbel’s generator (equation (9)) in (8), 
the Gumbel copula is given by:

( )( )( )1/
C(U,V ) exp log u

φφ = − −  
                                           (11)

Similarly, by using (10) in (8), the Clayton copula is given by:

( ) 1/
C(U,V ) 1u u

φφ φ −− −= + −                             (12)

Copula parameter estimation
The maximum-likelihood estimation of the copula parameters 
is based on the copula density. Parameter estimation 
using maximum-likelihood usually requires a parametric or 
nonparametric approximation of the marginal distributions of 
random variable. In this paper, we only consider the bivariate 
case. Hence the log likelihood function is given by:

1

( ) log ( , ; )
n

i
l c Ui Viφ φ

=

=∑                                                                (13)

With U and V uniform random variables defined on [0, 1] and 
given by: U = F1(x) and V = F2(y), c(U, V ) is the second derivative 
of C(U, V ) with respect to U and V . Maximizing equation (13) we 
get the maximum likelihood estimator of parameter θ. The Table 
4 contains the estimate parameters.

The estimates of the dependence parameter for Gumbel and 
Clayton copula are 2.78 and 4.45 respectively. These values 
are useful for calculating the tail dependence and correlation 
coefficients.

Copula- based dependence measures
The tail dependence coefficients as well as concordance 
measures: Kendall’s tau and spearman’s rho are good measures of 
dependency, especially to our database which is not appropriate 
to the linear correlation. The Kendall’s tau of two variables X and 
Y with C (U, V) the copula of bivariate distributions X and Y is 

Copula Parameter 
Gumbel Copula 2.78
Clayton Copula 4.45

Table 4 Copula parameters estimate.



2016
Vol. 2 No. 4: 34

7

ARCHIVOS DE MEDICINA
ISSN 1698-9465

© Under License of Creative Commons Attribution 3.0 License

 Medical Case Reports
ISSN 2471-8041

given by:

( )
1 1

0 0
, ( , ) ( , ) 1X Y C U V dC U Vτ = −∫ ∫

In spite of this formula, Kendall’s tau for Archimedean copula 
can be expressed as one dimensional integral of the generator 
and its derivative as shown by Genest and MacKay [9]. Then, 
Kendall’s tau for Archimedean copula can be calculated by using 
the following formula:

1

0

( )1 4
'( )
t dt
t

φτ
φ

= + ∫                              (14)

where φ is called an Archimedean generator. The Kendall’s tau 
for Gumbel copula is calculated by putting (9) in (14):

11Gumbelτ
φ

= −

Similarly, by putting (10) in (14) we get the Kendall’s tau for 
Clayton copula.

2Gumbel
φτ

φ
=

+
By using the results from Table 4, we can compute the value of 
Kendall coefficients (Table 5).

According to these generated results, there is a significant 
relationship between under- five mortality rate and GDP. τ (X, Y 
), the Kendall’s tau for variables X and Y is considered as measure 
of monotonic dependence between those two variables. 
Nevertheless, this measure is invariant under monotone 
transformation and the drawback of linear correlation is that 
in general it is invariant under that transformation. Embrechts 
et al. [10] suggested that it is better to use Kendall’s tau and 
Spearman’s correlation than using linear correlation.

Statistical Tests
Normality test
The Kolmogorov-Smirnov test (K-S test or KS test) is a 
nonparametric test of the equality of continuous, one-
dimensional probability distributions that can be used to 
compare a sample with a reference probability distribution 
(one-sample KS test), or to compare two samples (two-sample 
KS test). The Kolmogorov-Smirnov statistic quantifies a distance 
between the empirical distribution function of the sample and 
the cumulative distribution function of the reference distribution, 
or between the empirical distribution functions of two samples. 
The Kolmogorov-Smirnov test can be modified to serve as a 
goodness of fit test. In the special case of testing for normality of 
the distribution, samples are standardized and compared with a 
standard normal distribution. The empirical distribution function 
Fn for n iid observations Xi is defined as:

[ ]
1

1( ) , ( )
n

n i
i

F X I x X
n =

= −∞∑

where I[−∞,x](Xi) is the indicator function which is equal to 1 if Xi ≤ 
x and equal to 0 otherwise. The Kolmogorov-Smirnov statistic for 
a given cumulative distribution function

F (x) is:

nD sup ( ) ( )n
x

F x F x= −

where supx is the supremum of the set of distances. The 
key observation in the Kolmogorov- Smirnov test is that the 
distribution of this supremum does not depend on the unknown 
distribution of the sample. i.e., if F (x) is continuous then the 
distribution of 

sup ( ) ( )n
x

F x F x−  does not depend on F.

The normality tests are supplementary to the graphical 
assessment of normality. The main tests for the assessment of 
normality are Kolmogorov-Smirnov (K-S) test, Shapiro- Wilk test, 
Anderson-Darling test, Cramer-von Mises test, Jarque-Bera test, 
D’Agostino skewness test, D’Agostino-Pearson omnibus test, and 
Anscombe-Glynn kurtosis. The large number from any of these 
above tests supports the rejection of the null hypothesis. In this 
paper, we only used the Kolmogorov-Smirnov (K-S) test to test 
normality and the results are detailed in Tables 6 and 7 [11-20].

The generated Kolmogorov-Smirnov table contains the 
descriptive statistics of both under-five mortality rate and GDP 
in Rwanda from 1981 to 2015. The bootstrap of 100 samples also 
was performed.

Refer to the generated above table, the Kolmogorov-Smirnov 
statistics are 0.147 and 0.297 for under-five mortality rate and 
GDP respectively. The corresponding P-values are .053 and .000 
for respectively under-five mortality rate and GDP. Hence the 
under-five mortality rates are normally distributed while the 
GDPs are not. These results are not contrary to those found in 
section 3 about P-P and Q-Q plot [21-25].

Chi-square test
We would like to test whether there is a significant relationship 
between the under-five mortality rate and GDP. Previous 
generated output (kendall and spearman coefficient) showed 
that there is a strong negative relationship between those two 
variables. Using Chi-square test we can either reject or accept 
the hypothesis which states that there is a significant relationship 
between those variables (Table 8).

The P-value is 0.239 which is greater than 0.05 so that we fail 
to reject the null hypothesis, thus at 95% level of significance, 
we can conclude that there is a significant relationship between 
under-five mortality rate and GDP. The pearson correlation is 
-0.852 and Spearman correlation is -0.905, both values are closed 
to -1. hence there is a strong negative relationship between 
under-five mortality rate and GDP. The more GDP increases the 
more under-five mortality rate diminishes [25-30].Copula Kendall's tau 

Gumbel copula 0.64
Clayton copula 0.69

Table 5 Kendall’s tau.



2016
Vol. 2 No. 4: 34

8 This article is available in: http://medical-case-reports.imedpub.com

ARCHIVOS DE MEDICINA
ISSN 1698-9465

 Medical Case Reports
ISSN 2471-8041

Conclusion
This paper deals with association between under-five mortality 
rate and GDP in Rwanda from 1981 to 2015. We used parametric 
correlation coefficient (Pearson) and non-parametric correlation 
coefficients (Kendall and Spearman) to investigate the relationship 
between those two variables. The Chi-square test showed that 
there is a relationship between under-five mortality rate and 
GDP. Most of our results focused on relationship and supported 

 Statistic Std. Error

Bootstrap

Bias Std. Error
95% Confidence Interval

Lower Upper
Number of death per 1000
Mean 146 10.876 0.25 9.69 125.23 163.18

95% Confidence Interval for Mean
Lower Bound 123.9      
Upper Bound 168.1      

5% Trimmed Mean 143.94  0.92 10.15 121.79 162.46
Median 155  -0.57 9.7 124 170
Variance 4140.176  -147.864 828.162 2490.115 5677.865
Std. Deviation 64.344  -1.5 6.58 49.895 75.348
Minimum 42  
Maximum 300      
Range 258      
Interquartile Range 97 -6 24 35 129
Skewness 0.128 0.398 -0.081 0.334 -0.655 0.579
Kurtosis -0.236 0.778 0.008 0.59 -1.275 1.223
Gross Domestic Product in billion $
Mean 3.0486 0.36275 -0.0208 0.3228 2.3944 3.8967

95% Confidence Interval for Mean
Lower Bound 2.3114      
Upper Bound 3.7858      

5% Trimmed Mean 2.8627 -0.0145 0.3447 2.2048 3.7908
Median 2 0.022 0.2177 1.8 2.5433
Variance 4.606 -0.09 1.154 2.211 6.735
Std. Deviation 2.14605 -0.03942 0.28093 1.486 2.59523
Minimum 1.2
Maximum 8.5      
Range 7.3      
Interquartile Range 2.1 0.12 1.15 0.76 4.7
Skewness 1.432 0.398 0.046 0.406 0.574 2.452
Kurtosis 0.721 0.778 0.362 1.588 -1.317 5.701

Table 6 Kolmogorov- Smirnov statistic.

 
Kolmogorov- Smirnov Shapiro- Wilk

Statistic df Sig. Statistic df Sig.
Number of death per 1000 0.147 35 0.053 0.958 35 0.203

Gross Domestic Product in billion $ 0.297 35 0 0.75 35 0

Table 7 Tests of Normality.

the idea that the more is the GDP, the lesser         under-five 
mortality rate.

Appendix
1. Detrended Weibull PP and QQ plot (Figure 9 and 10).

2. Kaplan Meier survival and hazard function (Figure 11 and 12).

3. Kaplan Meier survival analysis (Table 9 and 10).

the 
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Figure 9 Detrended P-P plot of under-five mortality rate.

Chi-Square Tests   

 Value df Asymp. Sig. (2-sided)
Monte Carlo Sig. (2-sided)   

Sig.
99% Confidence Interval   

Lower Bound Upper Bound   
Pearson Chi-Square 685.417 660 0.239 0.350 0.227 0.473   

Likelihood Ration 199.647 660 1 1.000 0.955 1   
Fisher's Exact Test 1204.207 1.000 0.955 1   
Linear-by-Linear 

Association 24.692 1 0 0.000 0 0.045   

N of Valid Cases 35   
Bootstrap for Symmetric Measures   

 Value
Bootstrap   

Bias Std. Error
95% Confidence Interval   

Lower Upper   

Nominal by Nominal
Phi 4.425 -0.653 0.211 3.338 4.139   

Cramer's V 0.943 0.019 0.023 0.918 1   
Interval by Interval Pearson's R -0.852 -0.007 0.037 -0.933 -0.774   

Ordinal by Ordinal Spearman 
Correlation -0.905 0.01 0.061 -0.98 -0.722   

N of Valid Cases 35 0 0 35 35   
Symmetric Measures

 Value Asymp. Std. Error a Approx. Tb Approx. Sig.
Monte Carlo Sig.

Sig.
99% Confidence Interval

Lower Bound Upper Bound

Nominal by Nominal
Phi 4.425 0.239 0.290c 0.173 0.407

Cramer's V 0.943 0.239 0.290c 0.173 0.407
Interval by Interval Pearson's R -0.852 0.035 -9.357 0.000d 0.000c 0 0.045

Ordinal by Ordinal Spearman 
Correlation -0.905 0.051 -12.2 0.000d 0.000c 0 0.045

N of Valid Cases 35

Table 8 Chi-Square test statistics and bootstrap for symmetric measures.
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Figure 11 Kaplan Meier log survival function.
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Figure 12 Kaplan Meier Hazard function.
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Figure 10 Detrended QQ plot of gross domestic product.
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Survival Table

Time
cumulative proportion surviving at the time

N of cumulative Events N of Remaining cases
Estimate Std error

1 42.000 0.971 0.029 1 34
2 44.000 0.943 0.039 2 33
3 48.000 0.914 0.047 3 32
4 52.000 0.886 0.054 4 31
5 58.000 0.857 0.059 5 30
6 64.000 0.829 0.064 6 29
7 71.000 0.800 0.068 7 28
8 78.000 0.771 0.071 8 27
9 88.000 0.743 0.074 9 26

10 99.000 0.714 0.076 10 25
11 111.000 0.686 0.078 11 24
12 124.000 0.657 0.080 12 23
13 139.000 0.629 0.082 13 22
14 149.000 14 21
15 149.000 0.571 0.084 15 20
16 152.000 16 19
17 152.000 0.514 0.084 17 18
18 155.000 18 17
19 155.000 0.457 0.084 19 16
20 157.000 0.429 0.084 20 15
21 160.000 0.400 0.083 21 14
22 166.000 22 13
23 166.000 0.343 0.080 23 12
24 170.000 0.314 0.078 24 11
25 174.00 0.286 0.076 25 10
26 184.000 0.257 0.074 26 9
27 185.000 0.229 0.071 27 8
28 187.000 0.200 0.068 28 7
29 201.000 0.171 0.064 29 6
30 202.000 0.143 0.059 30 5
31 203.000 0.114 0.054 31 4
32 223.000 0.086 0.047 32 3
33 234.000 0.057 0.039 33 2
34 268.000 0.029 0.028 34 1
35 300.000 0.000 0.000 35 0

Table 9 Kaplan Meier analysis of survival time.



2016
Vol. 2 No. 4: 34

12 This article is available in: http://medical-case-reports.imedpub.com

ARCHIVOS DE MEDICINA
ISSN 1698-9465

 Medical Case Reports
ISSN 2471-8041

GDP
(billion $)

Mean Median
Estimate Std error 95% confidence Estimate Std error 95% confidence

Lower Bound Upper Bound Lower Bound Upper Bound
1.20 284.000 16.000 252.640 315.360 268.000
1.30 203.000 0.000 203.000 203.000 203.000
1.40 202.000 0.000 202.000 202.000 202.000
1.50 187.000 0.000 187.000 187.000 187.000
1.60 170.000 4.000 162.160 177.840 166.000
1.70 169.000 8.373 153.255 186.078 170.000 12.247 145.995 194.005
1.80 180.000 19.365 142.045 217.955 157.000 31.000 96.240 217.76
1.90 193.000 21.733 150.403 235.597 185.000 20.412 144.992 225.008
2.00 166.000 0.000 166.000 166.000 166.000
2.10 139.000 15.500 109.120 109.120 124.000
2.30 152.000 0.000 152.000 152.000 152.000
2.50 150.000 1.500 147.560 153.440 149.000
2.60 130.000 19.000 92.760 167.240 111.000
3.10 99.000 0.000 99.000 99.000 99.000
3.80 88.000 0.000 88.000 88.000 88.000
4.80 78.000 0.000 78.000 78.000 78.000
5.30 71.000 0.000 71.000 71.000 71.000
5.70 64.000 0.000 64.000 64.000 64.000
6.40 58.000 0.000 58.000 58.000 58.000
7.20 52.000 0.000 52.000 52.000 52.000
7.50 48.00 0.000 48.000 48.000 48.000
7.90 44.000 0.000 44.000 44.000 44.000
8.50 42.000 0.000 42.000 42.000 42.000

Over all 146.000 10.876 124.683 167.317 155.000 4.715 145.758 164.242

Table 10 Means and Medians for Survival Time.
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